
Dask Kubernetes Documentation
Release 2024.5.0

Dask kubernetes Developers

Apr 30, 2024

GETTING SYARTED

1 Quickstart 3

2 What is the operator? 5

3 What resources does the operator manage? 7
3.1 Worker Groups . 7
3.2 Clusters . 7
3.3 Jobs . 8
3.4 Autoscalers . 8

Index 45

i

ii

Dask Kubernetes Documentation, Release 2024.5.0

Welcome to the documentation for the Dask Kubernetes Operator.

Note: If you are looking for high-level documentation on deploying Dask on Kubernetes new users should head to the
Dask documentation page on Kubernetes.

The package dask-kubernetes provides a Dask operator for Kubernetes. dask-kubernetes is one of many options
for deploying Dask clusters, see Deploying Dask in the Dask documentation for an overview of additional options.

GETTING SYARTED 1

https://pypi.org/project/dask-kubernetes/
https://anaconda.org/conda-forge/dask-kubernetes
https://kubernetes.dask.org/en/latest/installing.html#supported-versions
https://kubernetes.dask.org/en/latest/installing.html#supported-versions
https://docs.dask.org/en/latest/deploying-kubernetes.html
https://docs.dask.org/en/stable/deploying.html#distributed-computing

Dask Kubernetes Documentation, Release 2024.5.0

2 GETTING SYARTED

CHAPTER

ONE

QUICKSTART

KubeCluster deploys Dask clusters on Kubernetes clusters using custom Kubernetes resources. It is designed to
dynamically launch ad-hoc deployments.

$ # Install operator CRDs and controller, needs to be done once on your Kubernetes␣
→˓cluster
$ helm install --repo https://helm.dask.org --create-namespace -n dask-operator --
→˓generate-name dask-kubernetes-operator

$ # Install dask-kubernetes
$ pip install dask-kubernetes

from dask_kubernetes.operator import KubeCluster
cluster = KubeCluster(name="my-dask-cluster", image='ghcr.io/dask/dask:latest')
cluster.scale(10)

3

Dask Kubernetes Documentation, Release 2024.5.0

4 Chapter 1. Quickstart

CHAPTER

TWO

WHAT IS THE OPERATOR?

The Dask Operator is a set of custom resources and a controller that runs on your Kubernetes cluster and allows you to
create and manage your Dask clusters as Kubernetes resources. Creating clusters can either be done via the Kubernetes
API with kubectl or the Python API with KubeCluster.

To install the operator you need to apply some custom resource definitions that allow us to describe Dask resources
and the operator itself which is a small Python application that watches the Kubernetes API for events related to our
custom resources and creates other resources such as Pods and Services accordingly.

5

Dask Kubernetes Documentation, Release 2024.5.0

6 Chapter 2. What is the operator?

CHAPTER

THREE

WHAT RESOURCES DOES THE OPERATOR MANAGE?

The operator manages a hierarchy of resources, some custom resources to represent Dask primitives like clusters and
worker groups, and native Kubernetes resources such as pods and services to run the cluster processes and facilitate
communication.

3.1 Worker Groups

A DaskWorkerGroup represents a homogenous group of workers that can be scaled. The resource is similar to a
native Kubernetes Deployment in that it manages a group of workers with some intelligence around the Pod lifecycle.
A worker group must be attached to a Dask Cluster resource in order to function.

All Kubernetes annotations on the DaskWorkerGroup resource will be passed onto worker Pod resources. Annotations
created by kopf or kubectl (i.e. starting with “kopf.zalando.org” or “kubectl.kubernetes.io”) will not be passed on.

3.2 Clusters

The DaskCluster custom resource creates a Dask cluster by creating a scheduler Pod, scheduler Service and default
DaskWorkerGroup which in turn creates worker Pod resources.

Workers connect to the scheduler via the scheduler Service and that service can also be exposed to the user in order
to connect clients and perform work.

The operator also has support for creating additional worker groups. These are extra groups of workers with different
configuration settings and can be scaled separately. You can then use resource annotations to schedule different tasks
to different groups.

All Kubernetes annotations <https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/> on the
DaskCluster resource will be passed onto the scheduler Pod and Service as well the DaskWorkerGroup resources.
Annotations created by kopf or kubectl (i.e. starting with “kopf.zalando.org” or “kubectl.kubernetes.io”) will not be
passed on.

For example you may wish to have a smaller pool of workers that have more memory for memory intensive tasks, or
GPUs for compute intensive tasks.

7

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://distributed.dask.org/en/stable/resources.html

Dask Kubernetes Documentation, Release 2024.5.0

3.3 Jobs

A DaskJob is a batch style resource that creates a Pod to perform some specific task from start to finish alongside a
DaskCluster that can be leveraged to perform the work.

All Kubernetes annotations <https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/> on the
DaskJob resource will be passed on to the job-runner Pod resource. If one also wants to set Kubernetes annota-
tions on the cluster-related resources (scheduler and worker Pods), these can be set as spec.cluster.metadata
in the DaskJob resource. Annotations created by kopf or kubectl (i.e. starting with “kopf.zalando.org” or
“kubectl.kubernetes.io”) will not be passed on.

Once the job Pod runs to completion the cluster is removed automatically to save resources. This is great for workflows
like training a distributed machine learning model with Dask.

3.4 Autoscalers

A DaskAutoscaler resource will communicate with the scheduler periodically and auto scale the default
DaskWorkerGroup to the desired number of workers.

from dask_kubernetes.operator import KubeCluster
cluster = KubeCluster(name="my-dask-cluster", image='ghcr.io/dask/dask:latest')
cluster.scale(10)

3.4.1 Installing

Python package

You can install dask-kubernetes with pip, conda, or by installing from source.

Pip

Pip can be used to install dask-kubernetes and its Python dependencies:

pip install dask-kubernetes --upgrade # Install everything from last released version

Conda

To install the latest version of dask-kubernetes from the conda-forge repository using conda:

conda install dask-kubernetes -c conda-forge

8 Chapter 3. What resources does the operator manage?

https://conda-forge.github.io/
https://www.anaconda.com/downloads

Dask Kubernetes Documentation, Release 2024.5.0

Install from Source

To install dask-kubernetes from source, clone the repository from github:

git clone https://github.com/dask/dask-kubernetes.git
cd dask-kubernetes
python setup.py install

or use pip locally if you want to install all dependencies as well:

pip install -e .

You can also install directly from git main branch:

pip install git+https://github.com/dask/dask-kubernetes

Operator

To use the Dask Operator you must install the custom resource definitions, service account, roles, and the operator
controller deployment.

Quickstart

$ helm install --repo https://helm.dask.org --create-namespace -n dask-operator --
→˓generate-name dask-kubernetes-operator

Installing with Helm

The operator has a Helm chart which can be used to manage the installation of the operator. The chart is published
in the Dask Helm repo repository, and can be installed via:

$ helm repo add dask https://helm.dask.org
"dask" has been added to your repositories

$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "dask" chart repository
Update Complete. Happy Helming!

$ helm install␣
→˓--create-namespace -n dask-operator --generate-name dask/dask-kubernetes-operator
NAME: dask-kubernetes-operator-1666875935
NAMESPACE: dask-operator
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Operator has been installed successfully.

Then you should be able to list your Dask clusters via kubectl.

3.4. Autoscalers 9

https://github.com/dask/dask-kubernetes
https://helm.dask.org

Dask Kubernetes Documentation, Release 2024.5.0

$ kubectl get daskclusters
No resources found in default namespace.

We can also check the operator pod is running:

$ kubectl get pods -A -l app.kubernetes.io/name=dask-kubernetes-operator
NAMESPACE␣
→˓ NAME READY STATUS RESTARTS AGE
dask-operator␣
→˓ dask-kubernetes-operator-775b8bbbd5-zdrf7 1/1 Running 0 74s

Warning: Please note that Helm does not support updating or deleting CRDs. If updates are made to the CRD
templates in future releases (to support future k8s releases, for example) you may have to manually update the CRDs
or delete/reinstall the Dask Operator.

Single namespace

By default the controller is installed with a ClusterRole and watches all namespaces. You can also just install it
into a single namespace by setting the following options.

$ helm install -n my-namespace --generate-name dask/dask-kubernetes-
→˓operator --set rbac.cluster=false --set kopfArgs="{--namespace=my-namespace}"
NAME: dask-kubernetes-operator-1749875935
NAMESPACE: my-namespace
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Operator has been installed successfully.

Prometheus

The operator helm chart also contains some optional ServiceMonitor and PodMonitor resources to enable
Prometheus scraping of Dask components. As not all clusters have the Prometheus operator installed these are
disabled by default. You can enable them with the following comfig options.

metrics:
scheduler:
enabled: true
serviceMonitor:
enabled: true

worker:
enabled: true
serviceMonitor:
enabled: true

You’ll also need to ensure the container images you choose for your Dask components have the prometheus_client
library installed. If you’re using the official Dask images you can install this at runtime.

10 Chapter 3. What resources does the operator manage?

https://helm.sh/docs/chart_best_practices/custom_resource_definitions/#some-caveats-and-explanations

Dask Kubernetes Documentation, Release 2024.5.0

from dask_kubernetes.operator import KubeCluster
cluster␣
→˓= KubeCluster(name="monitored", env={"EXTRA_PIP_PACKAGES": "prometheus_client"})

Chart Configuration Reference

Dask-kubernetes-operator

A helm chart for managing the deployment of the dask kubernetes operator and CRDs

Configuration

The following table lists the configurable parameters of the Dask-kubernetes-operator chart and their default values.

Parameter Description Default
image.name Docker image for the operator "ghcr.io/dask/dask-kubernetes-operator"
image.tag Release version "set-by-chartpress"
image.pullPolicy Pull policy "IfNotPresent"
imagePullSecrets Image pull secrets for private registries []
nameOverride Override release name (not including random UUID) ""
fullnameOverride Override full release name ""
serviceAccount.create Create a service account for the operator to use true
serviceAccount.annotations Annotations to add to the service account {}
serviceAccount.name The name of the service account to use. If not set and create is true, a name is generated using the fullname template. ""
rbac.create Create a Role/ClusterRole needed by the operator and bind it to the service account true
rbac.cluster Creates a ClusterRole if true, else create a namespaced Role true
podAnnotations Extra annotations for the operator pod {}
podSecurityContext Security context for the operator pod {}
securityContext.capabilities.drop ["ALL"]
securityContext.runAsNonRoot true
securityContext.runAsUser 1000
securityContext.allowPrivilegeEscalation false
securityContext.readOnlyRootFilesystem true
resources Resources for the operator pod {}
volumes Volumes for the operator pod []
volumeMounts Volume mounts for the operator container []
nodeSelector Node selector {}
tolerations Tolerations []
affinity Affinity {}
priorityClassName Priority class null
kopfArgs Command line flags to pass to kopf on start up ["--all-namespaces"]
metrics.scheduler.enabled Enable scheduler metrics. Pip package [prometheus-client](https://pypi.org/project/prometheus-client/) should be present on scheduler. false
metrics.scheduler.serviceMonitor.enabled Enable scheduler servicemonitor. false
metrics.scheduler.serviceMonitor.namespace Deploy servicemonitor in different namespace, e.g. monitoring. ""
metrics.scheduler.serviceMonitor.namespaceSelector Selector to select which namespaces the Endpoints objects are discovered from. {}
metrics.scheduler.serviceMonitor.additionalLabels Additional labels to add to the ServiceMonitor metadata. {}
metrics.scheduler.serviceMonitor.interval Interval at which metrics should be scraped. "15s"
metrics.scheduler.serviceMonitor.jobLabel The label to use to retrieve the job name from. ""

continues on next page

3.4. Autoscalers 11

https://pypi.org/project/prometheus-client/

Dask Kubernetes Documentation, Release 2024.5.0

Table 1 – continued from previous page
Parameter Description Default
metrics.scheduler.serviceMonitor.targetLabels TargetLabels transfers labels on the Kubernetes Service onto the target. ["dask.org/cluster-name"]
metrics.scheduler.serviceMonitor.metricRelabelings MetricRelabelConfigs to apply to samples before ingestion. []
metrics.worker.enabled Enable workers metrics. Pip package [prometheus-client](https://pypi.org/project/prometheus-client/) should be present on workers. false
metrics.worker.podMonitor.enabled Enable workers podmonitor false
metrics.worker.podMonitor.namespace Deploy podmonitor in different namespace, e.g. monitoring. ""
metrics.worker.podMonitor.namespaceSelector Selector to select which namespaces the Endpoints objects are discovered from. {}
metrics.worker.podMonitor.additionalLabels Additional labels to add to the PodMonitor metadata. {}
metrics.worker.podMonitor.interval Interval at which metrics should be scraped. "15s"
metrics.worker.podMonitor.jobLabel The label to use to retrieve the job name from. ""
metrics.worker.podMonitor.podTargetLabels PodTargetLabels transfers labels on the Kubernetes Pod onto the target. ["dask.org/cluster-name", "dask.org/workergroup-name"]
metrics.worker.podMonitor.metricRelabelings MetricRelabelConfigs to apply to samples before ingestion. []
workerAllocation.size null
workerAllocation.delay null

Documentation generated by Frigate.

Installing with Manifests

If you prefer to install the operator from static manifests with kubectl and set configuration options with tools like
kustomize you can generate the default manifests with:

$ helm template --include-crds␣
→˓--repo https://helm.dask.org release dask-kubernetes-operator | kubectl apply -f -

Kubeflow

In order to use the Dask Operator with Kubeflow you need to perform some extra installation steps.

User permissions

Kubeflow doesn’t know anything about our Dask custom resource definitions so we need to update the
kubeflow-kubernetes-edit cluster role. This role allows users with cluster edit permissions to create pods,
jobs and other resources and we need to add the Dask custom resources to that list. Edit the existing clusterrole

and add a new rule to the rules section for kubernetes.dask.org that allows all operations on all custom resources
in our API namespace.

$ kubectl patch clusterrole␣
→˓kubeflow-kubernetes-edit --type="json" --patch '[{"op": "add", "path": "/rules/-",
→˓ "value": {"apiGroups": ["kubernetes.dask.org"],"resources": ["*"],"verbs": ["*"]}}]'
clusterrole.rbac.authorization.k8s.io/kubeflow-kubernetes-edit patched

12 Chapter 3. What resources does the operator manage?

https://pypi.org/project/prometheus-client/
https://frigate.readthedocs.io
https://www.kubeflow.org/

Dask Kubernetes Documentation, Release 2024.5.0

Dashboard access

If you are using the Jupyter Notebook service in KubeFlow there are a couple of extra steps you need to do to be able
to access the Dask dashboard. The dashboard will be running on the scheduler pod and accessible via the scheduler
service, so to access that your Jupyter container will need to have the jupyter-server-proxy extension installed. If you

are using the Dask Jupter Lab extension this will be installed automatically for you.

By default the proxy will only allow proxying other services running on the same host as the Jupyter server, which
means you can’t access the scheduler running in another pod. So you need to set some extra config to tell the
proxy which hosts to allow. Given that we can already execute arbitrary code in Jupyter (and therefore interact

with other services within the Kubernetes cluster) we can allow all hosts in the proxy settings with c.ServerProxy.
host_allowlist = lambda app, host: True.

The dask_kubernetes.operator.KubeCluster and distributed.Client objects both have a
dashboard_link attribute that you can view to find the URL of the dashboard, and this is also used in
the widgets shown in Jupyter. The default link will not work on KubeFlow so you need to change this to

"{NB_PREFIX}/proxy/{host}:{port}/status" to ensure it uses the Jupyter proxy.

To apply these configuration options to the Jupyter pod you can create a PodDefault configuration object that can
be selected when launching the notebook. Create a new file with the following contents.

configure-dask-dashboard.yaml
apiVersion: "kubeflow.org/v1alpha1"
kind: PodDefault
metadata:
name: configure-dask-dashboard
spec:
selector:
matchLabels:
configure-dask-dashboard: "true"

desc: "configure dask dashboard"
env:

- name: DASK_DISTRIBUTED__DASHBOARD__LINK
value: "{NB_PREFIX}/proxy/{host}:{port}/status"

volumeMounts:
- name: jupyter-server-proxy-config
mountPath: /root/.jupyter/jupyter_server_config.py
subPath: jupyter_server_config.py

volumes:
- name: jupyter-server-proxy-config
configMap:
name: jupyter-server-proxy-config

apiVersion: v1
kind: ConfigMap
metadata:
name: jupyter-server-proxy-config
data:
jupyter_server_config.py: |

c.ServerProxy.host_allowlist = lambda app, host: True

Then apply this to your KubeFlow user’s namespace with kubectl. For example with the default user@example.
com user it would be.

3.4. Autoscalers 13

https://github.com/jupyterhub/jupyter-server-proxy
https://github.com/dask/dask-labextension
https://distributed.dask.org/en/latest/api.html#distributed.Client

Dask Kubernetes Documentation, Release 2024.5.0

$ kubectl apply -n kubeflow-user-example-com -f configure-dask-dashboard.yaml

Then when you launch your Jupyter Notebook server be sure to check the configure dask dashboard configu-
ration option.

Supported Versions

Python

All Dask projects generally follow the NEP 29 deprecation policy for Python where each Python minor version is
support ed for 42 months. Due to Python’s 12 month release cycle this ensures at least the current version and two
previous versions are supported.

The Dask Kubernetes CI tests all PRs against all supported Python versions.

Kubernetes

For Kubernetes we follow the yearly support KEP. Due to the 4-6 month release cycle this also ensures that at least
the current and two previous versions are supported.

The Dask Kubernetes CI tests all PRs against all supported Kubernetes versions.

Note: To keep the CI matrix smaller we test all Kubernetes versions against the latest Python, and all Python ver-
sions against the latest Kubernetes. We do not test older versions of Python and Kubernetes together. See dask/dask-
kubernetes#559 for more information.

3.4.2 KubeCluster

Cluster manager

The operator has a cluster manager called dask_kubernetes.operator.KubeCluster that you can use to con-
veniently create and manage a Dask cluster in Python. Then connect a Dask distributed.Client object to it
directly and perform your work.

The goal of the cluster manager is to abstract away the complexity of the Kubernetes resources and provide a clean
and simple Python API to manager clusters while still getting all the benefits of the operator.

Under the hood the Python cluster manager will interact with ther Kubernetes API to create custom resources for us.

To create a cluster in the default namespace, run the following

from dask_kubernetes.operator import KubeCluster

cluster = KubeCluster(name='foo')

14 Chapter 3. What resources does the operator manage?

https://numpy.org/neps/nep-0029-deprecation_policy.html
https://kubernetes.io/releases/patch-releases/#support-period
https://github.com/dask/dask-kubernetes/pull/559
https://github.com/dask/dask-kubernetes/pull/559
https://distributed.dask.org/en/latest/api.html#distributed.Client

Dask Kubernetes Documentation, Release 2024.5.0

You can change the default configuration of the cluster by passing additional args to the python class (namespace,
n_workers, etc.) of your cluster. See the API reference API

You can scale the cluster

Scale up the cluster
cluster.scale(5)

Scale down the cluster
cluster.scale(1)

You can autoscale the cluster

Allow cluster to autoscale between 1 and 10 workers
cluster.adapt(minimum=1, maximum=10)

Disable autoscaling by explicitly scaling to your desired number of workers
cluster.scale(1)

You can connect to the client

from dask.distributed import Client

Connect Dask to the cluster
client = Client(cluster)

Finally delete the cluster by running

cluster.close()

Additional worker groups

Additional worker groups can also be created via the cluster manager in Python.

from dask_kubernetes.operator import KubeCluster

cluster = KubeCluster(name='foo')

cluster.add_worker_group(name="highmem",␣
→˓n_workers=2, resources={"requests": {"memory": "2Gi"}, "limits": {"memory": "64Gi"}})

We can also scale the worker groups by name from the cluster object.

cluster.scale(5, worker_group="highmem")

Additional worker groups can also be deleted in Python.

cluster.delete_worker_group(name="highmem")

Any additional worker groups you create will be deleted when the cluster is deleted.

3.4. Autoscalers 15

Dask Kubernetes Documentation, Release 2024.5.0

Customising your cluster

The KubeCluster class can take a selection of keyword arguments to make it quick and easy to get started, however
the underlying DaskCluster resource can be much more complex and configured in many ways. Rather than exposing
every possibility via keyword arguments instead you can pass a valid DaskCluster resource spec which will be

used when creating the cluster. You can also generate a spec with make_cluster_spec() which KubeCluster uses
internally and then modify it with your custom options.

from dask_kubernetes.operator import KubeCluster, make_cluster_spec

config = {
"name": "foo",
"n_workers": 2,
"resources":{"requests": {"memory": "2Gi"}, "limits": {"memory": "64Gi"}}

}

cluster = KubeCluster(**config)
is equivalent to
cluster = KubeCluster(custom_cluster_spec=make_cluster_spec(**config))

You can also modify the spec before passing it to KubeCluster, for example if you want to set nodeSelector on
your worker pods you could do it like this:

from dask_kubernetes.operator import KubeCluster, make_cluster_spec

spec = make_cluster_spec(name="selector-example", n_workers=2)
spec["spec"]["worker"]["spec"]["nodeSelector"] = {"disktype": "ssd"}

cluster = KubeCluster(custom_cluster_spec=spec)

You could also have the scheduler run a Jupyter server. With this configuration you can access a Jupyter server via
the Dask dashboard.

from dask_kubernetes.operator import KubeCluster, make_cluster_spec

spec = make_cluster_
→˓spec(name="jupyter-example", n_workers=2, env={"EXTRA_PIP_PACKAGES": "jupyterlab"})
spec["spec"]["scheduler"]["spec"]["containers"][0]["args"].append("--jupyter")

cluster = KubeCluster(custom_cluster_spec=spec)

The cluster.add_worker_group() method also supports passing a custom_spec keyword argument which can
be generated with make_worker_spec().

from dask_kubernetes.operator import KubeCluster, make_worker_spec

cluster = KubeCluster(name="example")

worker_spec = make_worker_spec(cluster_
→˓name=cluster.name, n_workers=2, resources={"limits": {"nvidia.com/gpu": 1}})
worker_
→˓spec["spec"]["nodeSelector"] = {"cloud.google.com/gke-nodepool": "gpu-node-pool"}

cluster.add_worker_group(custom_spec=worker_spec)

16 Chapter 3. What resources does the operator manage?

Dask Kubernetes Documentation, Release 2024.5.0

Private container registry

One common use case where make_cluster_spec comes in handy is when pulling container images from a
private registry. The Kubernetes documentation suggests creating a Secret with your registry credentials and
then set the imagePullSecrets option in the Pod spec. The KubeCluster class doesn’t expose any way to

set imagePullSecrets so we will need to generate a spec and update it before creating the cluster. Thankfully
make_pod_spec makes this quick and painless.

$ kubectl create secret docker-registry regcred \
--docker-server=<your-registry-server> \
--docker-username=<your-name> \
--docker-password=<your-pword> \
--docker-email=<your-email>

from dask_kubernetes.operator import KubeCluster, make_cluster_spec

Generate the spec
spec = make_cluster_spec(name="custom", image="foo.com/jacobtomlinson/dask:latest")

Set the imagePullSecrets for the scheduler and worker pods
spec["spec"]["worker"]["spec"]["imagePullSecrets"] = [{"name": "regcred"}]
spec["spec"]["scheduler"]["spec"]["imagePullSecrets"] = [{"name": "regcred"}]

Create the cluster
cluster = KubeCluster(custom_cluster_spec=spec)

Role-Based Access Control (RBAC)

In order to spawn a Dask cluster from a pod that runs on the cluster, the service account creating that pod will require
a set of RBAC permissions. Create a service account you will use for Dask, and then attach the following ClusterRole
to that ServiceAccount via a ClusterRoleBinding:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: dask-cluster-role

rules:
Application: watching & handling for the custom resource we declare.
- apiGroups: [kubernetes.dask.org]
resources:␣

→˓[daskclusters, daskworkergroups, daskworkergroups/scale, daskjobs, daskautoscalers]
verbs: [get, list, watch, patch, create, delete]

Application: other resources it needs to watch and get information from.
- apiGroups:

- "" # indicates the core API group
resources: [pods, pods/status]
verbs:
- "get"
- "list"
- "watch"

(continues on next page)

3.4. Autoscalers 17

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

- apiGroups:
- "" # indicates the core API group
resources: [services]
verbs:
- "get"
- "list"
- "watch"

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: dask-cluster-role-binding

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: dask-cluster-role

subjects:
- kind: ServiceAccount
name: dask-sa # adjust name based on the service account you created

API

KubeCluster(*[, name, namespace, image, ...]) Launch a Dask Cluster on Kubernetes using the Operator
KubeCluster.scale(n[, worker_group]) Scale cluster to n workers
KubeCluster.adapt([minimum, maximum]) Turn on adaptivity
KubeCluster.get_logs() Get logs for Dask scheduler and workers.
KubeCluster.add_worker_group(name[, ...]) Create a dask worker group by name
KubeCluster.delete_worker_group(name) Delete a dask worker group by name
KubeCluster.close([timeout]) Delete the dask cluster

class dask_kubernetes.operator.KubeCluster(*, name: Optional[str] = None, namespace: Optional[str] =
None, image: Optional[str] = None, n_workers:
Optional[int] = None, resources: Optional[Dict[str, str]] =
None, env: Optional[Union[List[dict], Dict[str, str]]] =
None, worker_command: Optional[List[str]] = None,
port_forward_cluster_ip: Optional[bool] = None,
create_mode: Op-
tional[dask_kubernetes.operator.kubecluster.kubecluster.CreateMode]
= None, shutdown_on_close: Optional[bool] = None,
idle_timeout: Optional[int] = None, resource_timeout:
Optional[int] = None, scheduler_service_type:
Optional[str] = None, custom_cluster_spec:
Optional[Union[str, dict]] = None, scheduler_forward_port:
Optional[int] = None, jupyter: bool = False, loop:
Optional[tornado.ioloop.IOLoop] = None, asynchronous:
bool = False, quiet: bool = False, **kwargs)

Launch a Dask Cluster on Kubernetes using the Operator

This cluster manager creates a Dask cluster by deploying the necessary kubernetes resources the Dask Operator
needs to create pods. It can also connect to an existing cluster by providing the name of the cluster.

18 Chapter 3. What resources does the operator manage?

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Dask Kubernetes Documentation, Release 2024.5.0

Parameters

name: str Name given the Dask cluster. Required except when custom_cluster_spec is passed, in which case it’s ignored
in favor of custom_cluster_spec[“metadata”][“name”].

namespace: str (optional) Namespace in which to launch the workers. Defaults to current namespace if available or
“default”

image: str (optional) Image to run in Scheduler and Worker Pods.

n_workers: int Number of workers on initial launch. Use scale to change this number in the future

resources: Dict[str, str]

env: List[dict] | Dict[str, str] List of environment variables to pass to worker pod. Can be a list of dicts using the same
structure as k8s envs or a single dictionary of key/value pairs

worker_command: List[str] | str The command to use when starting the worker. If command consists of multiple
words it should be passed as a list of strings. Defaults to "dask-worker".

port_forward_cluster_ip: bool (optional) If the chart uses ClusterIP type services, forward the ports locally. If you
are running it locally it should be the port you are forwarding to <port>.

create_mode: CreateMode (optional) How to handle cluster creation if the cluster resource already exists. Default
behavior is to create a new cluster if one with that name doesn’t exist, or connect to an existing one if it does.
You can also set CreateMode.CREATE_ONLY to raise an exception if a cluster with that name already exists. Or

CreateMode.CONNECT_ONLY to raise an exception if a cluster with that name doesn’t exist.

shutdown_on_close: bool (optional) Whether or not to delete the cluster resource when this object is closed. Defaults
to True when creating a cluster and False when connecting to an existing one.

idle_timeout: int (optional) If set Kubernetes will delete the cluster automatically if the scheduler is idle for longer
than this timeout in seconds.

resource_timeout: int (optional) Time in seconds to wait for Kubernetes resources to enter their expected state. Ex-
ample: If the DaskCluster resource that gets created isn’t moved into a known status.phase by the controller
then it is likely the controller isn’t running or is malfunctioning and we time out and clean up with a useful error.

Example 2: If the scheduler Pod enters a CrashBackoffLoop state for longer than this timeout we give up with a
useful error. Defaults to 60 seconds.

scheduler_service_type: str (optional) Kubernetes service type to use for the scheduler. Defaults to ClusterIP.

jupyter: bool (optional) Start Jupyter on the scheduler node.

custom_cluster_spec: str | dict (optional) Path to a YAML manifest or a dictionary representation of a DaskCluster
resource object which will be used to create the cluster instead of generating one from the other keyword arguments.

scheduler_forward_port: int (optional) The port to use when forwarding the scheduler dashboard. Will utilize a ran-
dom port by default

quiet: bool If enabled, suppress all printed output. Defaults to False.

**kwargs: dict Additional keyword arguments to pass to LocalCluster

See also:

KubeCluster.from_name

3.4. Autoscalers 19

Dask Kubernetes Documentation, Release 2024.5.0

Examples

>>> from dask_kubernetes.operator import KubeCluster
>>> cluster = KubeCluster(name="foo")

You can add another group of workers (default is 3 workers) >>> cluster.add_worker_group(‘additional’, n=4)

You can then resize the cluster with the scale method >>> cluster.scale(10)

And optionally scale a specific worker group >>> cluster.scale(10, worker_group=’additional’)

You can also resize the cluster adaptively and give it a range of workers >>> cluster.adapt(20, 50)

You can pass this cluster directly to a Dask client >>> from dask.distributed import Client >>> client = Client(cluster)

You can also access cluster logs >>> cluster.get_logs()

You can also connect to an existing cluster >>> existing_cluster = KubeCluster.from_name(name=”ialreadyexist”)

Attributes

asynchronous Are we running in the event loop?

called_from_running_loop

dashboard_link

jupyter_link

loop

name

observed

plan

requested

scheduler_address

Methods

adapt([minimum, maximum]) Turn on adaptivity
add_worker_group(name[, n_workers, image, ...]) Create a dask worker group by name
close([timeout]) Delete the dask cluster
delete_worker_group(name) Delete a dask worker group by name
from_name(name, **kwargs) Create an instance of this class to represent an exist-

ing cluster by name.
get_client() Return client for the cluster
get_logs() Get logs for Dask scheduler and workers.
scale(n[, worker_group]) Scale cluster to n workers
sync(func, *args[, asynchronous, ...]) Call func with args synchronously or asynchronously

depending on the calling context
wait_for_workers(n_workers[, timeout]) Blocking call to wait for n workers before continuing

generate_rich_output
logs

20 Chapter 3. What resources does the operator manage?

Dask Kubernetes Documentation, Release 2024.5.0

adapt(minimum=None, maximum=None) Turn on
adaptivity

Parameters

minimum [int] Minimum number of workers

minimum [int] Maximum number of workers

Examples

>>> cluster.
→˓adapt() # Allow scheduler to add/remove workers within k8s cluster resource limits
>>> cluster.adapt(minimum=1,
→˓ maximum=10) # Allow scheduler to add/remove workers within 1-10 range

add_worker_group(name, n_workers=3, image=None, resources=None, worker_command=None,
env=None, custom_spec=None) Create a

dask worker group by name

Parameters

name: str Name of the worker group

n_workers: int Number of workers on initial launch. Use .scale(n_workers, worker_group=name) to change
this number in the future.

image: str (optional) Image to run in Scheduler and Worker Pods. If ommitted will use the cluster default.

resources: Dict[str, str] Resources to be passed to the underlying pods. If ommitted will use the cluster default.

env: List[dict] List of environment variables to pass to worker pod. If ommitted will use the cluster default.

custom_spec: dict (optional) A dictionary representation of a worker spec which will be used to create the
DaskWorkerGroup instead of generating one from the other keyword arguments.

Examples

>>> cluster.add_worker_group("high-mem-workers", n_workers=5)

close(timeout=3600) Delete
the dask cluster

delete_worker_group(name) Delete a
dask worker group by name

Parameters

name: str Name of the worker group

3.4. Autoscalers 21

Dask Kubernetes Documentation, Release 2024.5.0

Examples

>>> cluster.delete_worker_group("high-mem-workers")

classmethod from_name(name, **kwargs) Create
an instance of this class to represent an existing cluster by name.

Will fail if a cluster with that name doesn’t already exist.

Parameters

name: str Name of the cluster to connect to

Examples

>>> cluster = KubeCluster.from_name(name="simple-cluster")

get_logs() Get logs
for Dask scheduler and workers.

Examples

>>> cluster.get_logs()
{'foo': ...,
'foo-default-worker-0269dbfa0cfd4a22bcd9d92ae032f4d2': ...,
'foo-default-worker-7c1ccb04cd0e498fb21babaedd00e5d4': ...,
'foo-default-worker-d65bee23bdae423b8d40c5da7a1065b6': ...}
Each log will be a string of all logs for that container. To view
it is recommeded that you print each log.
>>> print(cluster.get_logs()["testdask-scheduler-5c8ffb6b7b-sjgrg"])
...
distributed.scheduler - INFO - ---
distributed.scheduler - INFO - Clear task state
distributed.scheduler - INFO - Scheduler at: tcp://10.244.0.222:8786
distributed.scheduler - INFO - dashboard at: :8787
...

scale(n, worker_group='default') Scale
cluster to n workers

Parameters

n [int] Target number of workers

worker_group [str] Worker group to scale

22 Chapter 3. What resources does the operator manage?

Dask Kubernetes Documentation, Release 2024.5.0

Examples

>>> cluster.scale(10) # scale cluster to ten workers
>>> cluster.scale(7, worker_
→˓group="high-mem-workers") # scale worker group high-mem-workers to seven workers

dask_kubernetes.operator.make_cluster_spec(name, image='ghcr.io/dask/dask:latest', n_workers=None,
resources=None, env=None,
worker_command='dask-worker',
scheduler_service_type='ClusterIP', idle_timeout=0,
jupyter=False)

Generate a DaskCluster kubernetes resource.

Populate a template with some common options to generate a DaskCluster kubernetes resource.

Parameters

name: str Name of the cluster

image: str (optional) Container image to use for the scheduler and workers

n_workers: int (optional) Number of workers in the default worker group

resources: dict (optional) Resource limits to set on scheduler and workers

env: dict (optional) Environment variables to set on scheduler and workers

worker_command: str (optional) Worker command to use when starting the workers

idle_timeout: int (optional) Timeout to cleanup idle cluster

jupyter: bool (optional) Start Jupyter on the Dask scheduler

dask_kubernetes.operator.make_worker_spec(image='ghcr.io/dask/dask:latest', n_workers=3,
resources=None, env=None,
worker_command='dask-worker')

3.4.3 Custom Resources

The Dask Operator has a few custom resources that can be used to create various Dask components.

• DaskCluster creates a full Dask cluster with a scheduler and workers.

• DaskWorkerGroup creates homogenous groups of workers, DaskCluster creates one by default but you can add
more if you want multiple worker types.

• DaskJob creates a Pod that will run a script to completion along with a DaskCluster that the script can leverage.

DaskCluster

The DaskCluster custom resource creates a Dask cluster by creating a scheduler Pod, scheduler Service and
default DaskWorkerGroup which in turn creates worker Pod resources.

Let’s create an example called cluster.yaml with the following configuration:

cluster.yaml
apiVersion: kubernetes.dask.org/v1
kind: DaskCluster

(continues on next page)

3.4. Autoscalers 23

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

metadata:
name: simple

spec:
worker:
replicas: 2
spec:
containers:
- name: worker
image: "ghcr.io/dask/dask:latest"
imagePullPolicy: "IfNotPresent"
args:
- dask-worker
- --name
- $(DASK_WORKER_NAME)
- --dashboard
- --dashboard-address
- "8788"

ports:
- name: http-dashboard
containerPort: 8788
protocol: TCP

scheduler:
spec:
containers:
- name: scheduler
image: "ghcr.io/dask/dask:latest"
imagePullPolicy: "IfNotPresent"
args:
- dask-scheduler

ports:
- name: tcp-comm
containerPort: 8786
protocol: TCP

- name: http-dashboard
containerPort: 8787
protocol: TCP

readinessProbe:
httpGet:
port: http-dashboard
path: /health

initialDelaySeconds: 5
periodSeconds: 10

livenessProbe:
httpGet:
port: http-dashboard
path: /health

initialDelaySeconds: 15
periodSeconds: 20

service:
type: NodePort
selector:
dask.org/cluster-name: simple

(continues on next page)

24 Chapter 3. What resources does the operator manage?

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

dask.org/component: scheduler
ports:
- name: tcp-comm
protocol: TCP
port: 8786
targetPort: "tcp-comm"

- name: http-dashboard
protocol: TCP
port: 8787
targetPort: "http-dashboard"

Editing this file will change the default configuration of you Dask cluster. See the Configuration Reference DaskAu-
toscaler. Now apply cluster.yaml

$ kubectl apply -f cluster.yaml
daskcluster.kubernetes.dask.org/simple created

We can list our clusters:

$ kubectl get daskclusters
NAME AGE
simple 47s

To connect to this Dask cluster we can use the service that was created for us.

$ kubectl get svc -l dask.org/cluster-name=simple
NAME␣
→˓ TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
simple␣
→˓ ClusterIP 10.96.85.120 <none> 8786/TCP,8787/TCP 86s

We can see here that port 8786 has been exposed for the Dask communication along with 8787 for the Dashboard.

How you access these service endpoints will vary depending on your Kubernetes cluster configuration. For this quick
example we could use kubectl to port forward the service to your local machine.

$ kubectl port-forward svc/simple 8786:8786
Forwarding from 127.0.0.1:8786 -> 8786
Forwarding from [::1]:8786 -> 8786

Then we can connect to it from a Python session.

>>> from dask.distributed import Client
>>> client = Client("localhost:8786")
>>> print(client)
<Client: 'tcp://10.244.0.12:8786' processes=3 threads=12, memory=23.33 GiB>

We can also list all of the pods created by the operator to run our cluster.

$ kubectl get po -l dask.org/cluster-name=simple
NAME ␣
→˓ READY STATUS RESTARTS AGE
simple-default-worker-13f4f0d13bbc40a58cfb81eb374f26c3␣
→˓ 1/1 Running 0 104s

(continues on next page)

3.4. Autoscalers 25

https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster-services/

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

simple-default-worker-aa79dfae83264321a79f1f0ffe91f700␣
→˓ 1/1 Running 0 104s
simple-default-worker-f13c4f2103e14c2d86c1b272cd138fe6␣
→˓ 1/1 Running 0 104s
simple-scheduler ␣
→˓ 1/1 Running 0 104s

The workers we see here are created by our clusters default workergroup resource that was also created by the
operator.

You can scale the workergroup like you would a Deployment or ReplicaSet:

$ kubectl scale --replicas=5 daskworkergroup simple-default
daskworkergroup.kubernetes.dask.org/simple-default

We can verify that new pods have been created.

$ kubectl get po -l dask.org/cluster-name=simple
NAME ␣
→˓ READY STATUS RESTARTS AGE
simple-default-worker-13f4f0d13bbc40a58cfb81eb374f26c3␣
→˓ 1/1 Running 0 5m26s
simple-default-worker-a52bf313590f432d9dc7395875583b52␣
→˓ 1/1 Running 0 27s
simple-default-worker-aa79dfae83264321a79f1f0ffe91f700␣
→˓ 1/1 Running 0 5m26s
simple-default-worker-f13c4f2103e14c2d86c1b272cd138fe6␣
→˓ 1/1 Running 0 5m26s
simple-default-worker-f4223a45b49d49288195c540c32f0fc0␣
→˓ 1/1 Running 0 27s
simple-scheduler ␣
→˓ 1/1 Running 0 5m26s

Finally we can delete the cluster either by deleting the manifest we applied before, or directly by name:

$ kubectl delete -f cluster.yaml
daskcluster.kubernetes.dask.org "simple" deleted

$ kubectl delete daskcluster simple
daskcluster.kubernetes.dask.org "simple" deleted

DaskWorkerGroup

When we create a DaskCluster resource a default worker group is created for us. But we can add more by creating
more manifests. This allows us to create workers of different shapes and sizes that Dask can leverage for different
tasks.

Let’s create an example called highmemworkers.yaml with the following configuration:

highmemworkers.yaml
apiVersion: kubernetes.dask.org/v1
kind: DaskWorkerGroup
metadata:

(continues on next page)

26 Chapter 3. What resources does the operator manage?

https://distributed.dask.org/en/stable/resources.html
https://distributed.dask.org/en/stable/resources.html

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

name: simple-highmem
spec:
cluster: simple
worker:
replicas: 2
spec:
containers:
- name: worker
image: "ghcr.io/dask/dask:latest"
imagePullPolicy: "IfNotPresent"
resources:
requests:
memory: "32Gi"

limits:
memory: "32Gi"

args:
- dask-worker
- --name
- $(DASK_WORKER_NAME)
- --resources
- MEMORY=32e9
- --dashboard
- --dashboard-address
- "8788"

ports:
- name: http-dashboard
containerPort: 8788
protocol: TCP

The main thing we need to ensure is that the cluster option matches the name of the cluster we created earlier.
This will cause the workers to join that cluster.

See the DaskAutoscaler. Now apply highmemworkers.yaml

$ kubectl apply -f highmemworkers.yaml
daskworkergroup.kubernetes.dask.org/simple-highmem created

We can list our clusters:

$ kubectl get daskworkergroups
NAME AGE
simple-default 2 hours
simple-highmem 47s

We don’t need to worry about deleting this worker group seperately, because it has joined the existing cluster Kuber-
netes will delete it when the DaskCluster resource is deleted.

Scaling works the same was as the default worker group and can be done with the kubectl scale command.

3.4. Autoscalers 27

Dask Kubernetes Documentation, Release 2024.5.0

DaskJob

The DaskJob custom resource behaves similarly to other Kubernetes batch resources. It creates a Pod that executes
a command to completion. The difference is that the DaskJob also creates a DaskCluster alongside it and injects
the appropriate configuration into the job Pod for it to automatically connect to and leverage the Dask cluster.

Let’s create an example called job.yaml with the following configuration:

job.yaml
apiVersion: kubernetes.dask.org/v1
kind: DaskJob
metadata:
name: simple-job
namespace: default

spec:
job:
spec:
containers:
- name: job
image: "ghcr.io/dask/dask:latest"
imagePullPolicy: "IfNotPresent"
args:
- python
- -c

␣
→˓ - "from dask.distributed import Client; client = Client(); # Do some work..."

cluster:
spec:
worker:
replicas: 2
spec:
containers:
- name: worker
image: "ghcr.io/dask/dask:latest"
imagePullPolicy: "IfNotPresent"
args:
- dask-worker
- --name
- $(DASK_WORKER_NAME)
- --dashboard
- --dashboard-address
- "8788"

ports:
- name: http-dashboard
containerPort: 8788
protocol: TCP

env:
- name: WORKER_ENV
value: hello-world # We dont test the value, just the name

scheduler:
spec:
containers:
- name: scheduler

(continues on next page)

28 Chapter 3. What resources does the operator manage?

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

image: "ghcr.io/dask/dask:latest"
imagePullPolicy: "IfNotPresent"
args:
- dask-scheduler

ports:
- name: tcp-comm
containerPort: 8786
protocol: TCP

- name: http-dashboard
containerPort: 8787
protocol: TCP

readinessProbe:
httpGet:
port: http-dashboard
path: /health

initialDelaySeconds: 5
periodSeconds: 10

livenessProbe:
httpGet:
port: http-dashboard
path: /health

initialDelaySeconds: 15
periodSeconds: 20

env:
- name: SCHEDULER_ENV
value: hello-world

service:
type: ClusterIP
selector:
dask.org/cluster-name: simple-job
dask.org/component: scheduler

ports:
- name: tcp-comm
protocol: TCP
port: 8786
targetPort: "tcp-comm"

- name: http-dashboard
protocol: TCP
port: 8787
targetPort: "http-dashboard"

Editing this file will change the default configuration of you Dask job. See the DaskAutoscaler. Now apply job.
yaml

$ kubectl apply -f job.yaml
daskjob.kubernetes.dask.org/simple-job created

Now if we check our cluster resources we should see our job and cluster pods being created.

$ kubectl get pods
NAME ␣
→˓ READY STATUS RESTARTS AGE

(continues on next page)

3.4. Autoscalers 29

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

simple-job-scheduler␣
→˓ 1/1 Running 0 8s
simple-job-runner␣
→˓ 1/1 Running 0 8s
simple-job-default-
→˓worker-1f6c670fba 1/1 Running 0 8s
simple-job-default-
→˓worker-791f93d9ec 1/1 Running 0 8s

Our runner pod will be doing whatever we configured it to do. In our example you can see we just create a simple
dask.distributed.Client object like this:

from dask.distributed import Client

client = Client()

Do some work...

We can do this because the job pod gets some additional environment variables set at runtime which tell the Client
how to connect to the cluster, so the user doesn’t need to worry about it.

The job pod has a default restart policy of OnFalure so if it exits with anything other than a 0 return code it will
be restarted automatically until it completes successfully. When it does return a 0 it will go into a Completed state
and the Dask cluster will be cleaned up automatically freeing up Kubernetes cluster resources.

$ kubectl get pods
NAME ␣
→˓ READY STATUS RESTARTS AGE
simple-job-runner␣
→˓ 0/1 Completed 0 14s
simple-job-scheduler␣
→˓ 1/1 Terminating 0 14s
simple-job-default-
→˓worker-1f6c670fba 1/1 Terminating 0 14s
simple-job-default-
→˓worker-791f93d9ec 1/1 Terminating 0 14s

When you delete the DaskJob resource everything is delete automatically, whether that’s just the Completed runner
pod left over after a successful run or a full Dask cluster and runner that is still running.

$ kubectl delete -f job.yaml
daskjob.kubernetes.dask.org "simple-job" deleted

30 Chapter 3. What resources does the operator manage?

Dask Kubernetes Documentation, Release 2024.5.0

DaskAutoscaler

The DaskAutoscaler resource allows the scheduler to scale up and down the number of workers using dask’s
adaptive mode.

By creating the resource the operator controller will periodically poll the scheduler and request the desired number
of workers. The scheduler calculates this number by profiling the tasks it is processing and then extrapolating how
many workers it would need to complete the current graph within 5 seconds.

The controller will constrain this number between the minimum and maximum values configured in the
DaskAutoscaler resource and then update the number of replicas in the default DaskWorkerGroup.

autoscaler.yaml
apiVersion: kubernetes.dask.org/v1
kind: DaskAutoscaler
metadata:
name: simple

spec:
cluster: "simple"
minimum: 1 # we recommend always having␣

→˓a minimum of 1 worker so that an idle cluster can start working on tasks immediately
maximum: 10 # you can␣

→˓place a hard limit on the number of workers regardless of what the scheduler requests

$ kubectl apply -f autoscaler.yaml
daskautoscaler.kubernetes.dask.org/simple created

You can end the autoscaling at any time by deleting the resource. The number of workers will remain at whatever
the autoscaler last set it to.

$ kubectl delete -f autoscaler.yaml
daskautoscaler.kubernetes.dask.org/simple deleted

Note: The autoscaler will only scale the default WorkerGroup. If you have additional worker groups configured they
will not be taken into account.

Labels and Annotations

Labels and annotations are propagated to child resources, so labels applied to a DaskCluster will also be present
on the Pod and Service resources it creates.

• Labels/annotations on DaskCluster are propagated to the DaskWorkerGroup, scheduler Pod and scheduler
Service.

• Labels/annotations on DaskWorkerGroup are propagated to the worker Pod.

• Labels/annotations on DaskJob are propagated to the job Pod and DaskCluster.

Some resources also have subresource metadata options for setting labels and annotations on the resources it creates.

• DaskCluster has spec.worker.metadata which is merged into the labels/annotations for the
DaskWorkerGroup.

• DaskCluster has spec.scheduler.metadata which is merged into the labels/annotations for the scheduler Pod
and scheduler Service.

3.4. Autoscalers 31

Dask Kubernetes Documentation, Release 2024.5.0

• DaskJob has spec.job.metadata which is merged into the labels/annotations for the job Pod.

The order of label/annotation application is top_level <= subresource <= base. So if the DaskCluster has
a label of foo=bar but the spec.worker.metadata.labels had a label of foo=baz then the worker Pod would
have foo=baz.

Equally, if the reserved base label dask.org/component is set at either the top-level or subresource-level this
will be overridden by the controller. So setting dask.org/component=superworker in DaskCluster.spec.
worker.metadata.labels will have no effect and the worker Pod will still have the expected label of dask.org/

component=worker.

Example

The following DaskCluster has top-level annotations as well as worker and scheduler subresource annotations.

apiVersion: kubernetes.dask.org/v1
kind: DaskCluster
metadata:
name: example
annotations:
hello: world

spec:
worker:
replicas: 2
metadata:
annotations:
foo: bar

spec:
...

scheduler:
metadata:
annotations:
fizz: buzz

spec:
...

The resulting scheduler Pod metadata annotations would be.

apiVersion: v1
kind: Pod
metadata:
name: example-scheduler
annotations:
fizz: buzz
hello: world

...

32 Chapter 3. What resources does the operator manage?

Dask Kubernetes Documentation, Release 2024.5.0

Full Configuration Reference

Full DaskCluster spec reference.

apiVersion: kubernetes.dask.org/v1
kind: DaskCluster
metadata:
name: example

spec:
worker:
replicas: 2 # number of replica workers to spawn
spec: ... # PodSpec, standard k8s pod -

→˓ https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.21/#podspec-v1-core
scheduler:
spec: ... # PodSpec, standard k8s pod -

→˓ https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.21/#podspec-v1-core
service: ... # ServiceSpec, standard k8s service - https:/

→˓/kubernetes.io/docs/reference/generated/kubernetes-api/v1.21/#servicespec-v1-core

Full DaskWorkerGroup spec reference.

apiVersion: kubernetes.dask.org/v1
kind: DaskWorkerGroup
metadata:
name: example

spec:
cluster: "name of DaskCluster to associate worker group with"
worker:
replicas: 2 # number of replica workers to spawn
spec: ... # PodSpec, standard k8s pod -

→˓ https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.21/#podspec-v1-core

Full DaskJob spec reference.

apiVersion: kubernetes.dask.org/v1
kind: DaskJob
metadata:
name: example

spec:
job:
spec: ... # PodSpec, standard k8s pod -

→˓ https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.21/#podspec-v1-core
cluster:
spec: ... # ClusterSpec, DaskCluster resource spec

Full DaskAutoscaler spec reference.

apiVersion: kubernetes.dask.org/v1
kind: DaskAutoscaler
metadata:
name: example

spec:
cluster: "name of DaskCluster to autoscale"
minimum: 0 # minimum number of workers to create

(continues on next page)

3.4. Autoscalers 33

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

maximum: 10 # maximum number of workers to create

3.4.4 Extending (advanced)

You can extend the functionality of the Dask Operator controller by writing plugins. You may wish to do this if
you want the operator to create other resources like Istio VirtualSerivce, Gateway and Certificate resources.
Extra resources like this may end up being a common requirement, but given the endless possibilities of k8s cluster

setups it’s hard to make this configurable.

To help cluster administrators ensure the Dask Operator does exactly what they need we support extending the
controller via plugins.

Controller Design Overview

The Dask Operator’s controller is built using kopf which allows you to write custom handler functions in Python
for any Kubernetes event. The Dask Operator has a selection of Custom Resources and the controller handles cre-
ate/update/delete events for these resources. For example whenever a DaskCluster resource is created the controller

sets the status.phase attribute to Created.

@kopf.on.create("daskcluster.kubernetes.dask.org")
async def daskcluster_create(name, namespace, logger, patch, **kwargs):
"""When DaskCluster resource is created set the status.phase.

This allows us to track that the operator is running.
"""
logger.info(f"DaskCluster {name} created in {namespace}.")
patch.status["phase"] = "Created"

Then there is another handler that watches for DaskCluster resources that have been put into this Created phase.
This handler creates the Pod, Service and DaskWorkerGroup subresources of the cluster and then puts it into a
Running phase.

@kopf.on.field("daskcluster.kubernetes.dask.org", field="status.phase", new="Created")
async␣
→˓def daskcluster_create_components(spec, name, namespace, logger, patch, **kwargs):
"""When␣

→˓the DaskCluster status.phase goes into Pending create the cluster components."""
async with kubernetes.client.api_client.ApiClient() as api_client:

api = kubernetes.client.CoreV1Api(api_client)
custom_api = kubernetes.client.CustomObjectsApi(api_client)

Create scheduler Pod
data = build_scheduler_pod_spec(...)
kopf.adopt(data)
await api.create_namespaced_pod(namespace=namespace, body=data)

Create scheduler Service
data = build_scheduler_service_spec(...)
kopf.adopt(data)
await api.create_namespaced_service(namespace=namespace, body=data)

(continues on next page)

34 Chapter 3. What resources does the operator manage?

https://kopf.readthedocs.io/en/stable/

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

Create DaskWorkerGroup
data = build_worker_group_spec(...)
kopf.adopt(data)
await custom_api.create_namespaced_custom_object(group="kubernetes.

→˓dask.org", version="v1", plural="daskworkergroups", namespace=namespace, body=data)

Set DaskCluster to Running phase
patch.status["phase"] = "Running"

Then when the DaskWorkerGroup resource is created that triggers the worker creation event handler which creates
more Pod resources. In turn the creation of Pod and Service resources will be triggering internal event handlers
in Kubernetes which will create containers, set iptable rules, etc.

This model of writing small handlers that are triggered by events in Kubernetes allows you to create powerful tools
with simple building blocks.

Writing your own handlers

To avoid users having to write their own controllers the Dask Operator controller supports loading additional handlers
from other packages via entry_points.

Custom handlers must be packaged as a Python module and be importable.

For example let’s say you have a minimal Python package with the following structure:

my_controller_plugin/
pyproject.toml
my_controller_plugin/

__init__.py
plugin.py

If you wanted to write a custom handler that would be triggered when the scheduler Service is created then plugin.
py would look like this:

import kopf

@kopf.on.create("service", labels={"dask.org/component": "scheduler"})
async def handle_scheduler_service_create(meta, new, namespace, logger, **kwargs):
Do something here
See https:/

→˓/kopf.readthedocs.io/en/stable/handlers for documentation on what is possible here

Then you need to ensure that your pyproject.toml registers the plugin as a dask_operator_plugin.

...

[option.entry_points]
dask_operator_plugin =

my_controller_plugin = my_controller_plugin.plugin

Then you can package this up and push it to your preferred Python package repository.

3.4. Autoscalers 35

https://packaging.python.org/en/latest/tutorials/packaging-projects/

Dask Kubernetes Documentation, Release 2024.5.0

Installing your plugin

When the Dask Operator controller starts up it checks for any plugins registered via the dask_operator_plugin
entry point and loads those too. This means that installing your plugin is as simple as ensuring your plugin package
is installed in the controller container image.

The controller uses the ghcr.io/dask/dask-kubernetes-operator:latest container image by default so your
custom container Dockerfile would look something like this:

FROM ghcr.io/dask/dask-kubernetes-operator:latest

RUN pip install my-controller-plugin

Then when you install the controller deployment either via the manifest or with helm you would specify your custom
container image instead.

helm␣
→˓install --set image.name=my_controller_image myrelease dask/dask-kubernetes-operator

3.4.5 Troubleshooting

This page contains common problems and resolutions.

Why am I losing data during scale down?

When scaling down a cluster the controller will attempt to coordinate with the Dask scheduler and decide which
workers to remove. If the controller cannot communicate with the scheduler it will fall back to last-in-first-out
scaling and will remove the worker with the lowest uptime, even if that worker is actively processing data. This can

result in loss of data and recalculation of a graph.

This commonly happens if the version of Dask on the scheduler is very different to the verison on the controller.

To mitigate this Dask has an optional HTTP API which is more decoupled than the RPC and allows for better support
between versions.

See https://github.com/dask/dask-kubernetes/issues/807

3.4.6 Migrating from classic

The classic KubeCluster class has been replaced with a new version that is built using the Kubernetes Operator
pattern.

Installing the operator

To use the new implementation of KubeCluster you need to install the Dask operator custom resources and con-
troller.

The custom resources allow us to describe our Dask cluster components as native Kubernetes resources rather than
directly creating Pod and Service resources like the classic implementation does.

Unfortunately this requires a small amount of first time setup on you Kubernetes cluster before you can start using
dask-kubernetes. This is a key reason why the new implementation has breaking changes. The quickest way to
install things is with helm.

36 Chapter 3. What resources does the operator manage?

https://github.com/dask/dask-kubernetes/issues/807

Dask Kubernetes Documentation, Release 2024.5.0

$ helm repo add dask https://helm.dask.org
"dask" has been added to your repositories

$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "dask" chart repository
Update Complete. Happy Helming!

$ helm install␣
→˓--create-namespace -n dask-operator --generate-name dask/dask-kubernetes-operator
NAME: dask-kubernetes-operator-1666875935
NAMESPACE: dask-operator
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Operator has been installed successfully.

Now that you have the controller and CRDs installed on your cluster you can start using the new dask_kubernetes.
operator.KubeCluster.

Using the new KubeCluster

The way you create clusters with KubeCluster has changed so let’s look at some comparisons and explore how to
migrate from the classic to the new.

Simplified Python API

One of the first big changes we’ve made is making simple use cases simpler. The only thing you need to create a
minimal cluster is to give it a name.

from dask_kubernetes.operator import KubeCluster

cluster = KubeCluster(name="mycluster")

The first step we see folks take in customising their clusters is to modify things like the container image, environment
variables, resources, etc. We’ve made all of the most common options available as keyword arguments to make small
changes easier.

from dask_kubernetes.operator import KubeCluster

cluster = KubeCluster(name="mycluster",
image='ghcr.io/dask/dask:latest',
n_workers=3
env={"FOO": "bar"},

␣
→˓ resources={"requests": {"memory": "2Gi"}, "limits": {"memory": "64Gi"}})

3.4. Autoscalers 37

Dask Kubernetes Documentation, Release 2024.5.0

Advanced YAML API

We’ve taken care to simplify the API for new users, but we have also worked hard to ensure the new implementation
provides even more flexibility for advanced users.

Users of the classic implementation of KubeCluster have a lot of control over what the worker pods look like
because you are required to provide a full YAML Pod spec. Instead of creating a loose collection of Pod resources
directly the new implementation groups everything together into a DaskCluster custom resource. This resource

contains some cluster configuration options and nested specs for the worker pods and scheduler pod/service. This way
things are infinitely configurable, just be careful not to shooot yourself in the foot.

The classic getting started page had the following pod spec example:

worker-spec.yml
kind: Pod
metadata:
labels:
foo: bar

spec:
restartPolicy: Never
containers:
- image: ghcr.io/dask/dask:latest
imagePullPolicy: IfNotPresent
args: [dask-

→˓worker, --nthreads, '2', --no-dashboard, --memory-limit, 6GB, --death-timeout, '60']
name: dask-worker
env:
- name: EXTRA_PIP_PACKAGES
value: git+https://github.com/dask/distributed

resources:
limits:
cpu: "2"
memory: 6G

requests:
cpu: "2"
memory: 6G

In the new implementation a cluster spec with the same options would look like this:

cluster-spec.yml
apiVersion: kubernetes.dask.org/v1
kind: DaskCluster
metadata:
name: example
labels:
foo: bar

spec:
worker:
replicas: 2
spec:
restartPolicy: Never
containers:
- name: worker
image: "ghcr.io/dask/dask:latest"

(continues on next page)

38 Chapter 3. What resources does the operator manage?

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

imagePullPolicy: "IfNotPresent"
args: [dask-worker, --nthreads, '2', --no-

→˓dashboard, --memory-limit, 6GB, --death-timeout, '60', '--name', $(DASK_WORKER_NAME)]
env:
- name: EXTRA_PIP_PACKAGES
value: git+https://github.com/dask/distributed

resources:
limits:
cpu: "2"
memory: 6G

requests:
cpu: "2"
memory: 6G

scheduler:
spec:
containers:
- name: scheduler
image: "ghcr.io/dask/dask:latest"
imagePullPolicy: "IfNotPresent"
args:
- dask-scheduler

ports:
- name: tcp-comm
containerPort: 8786
protocol: TCP

- name: http-dashboard
containerPort: 8787
protocol: TCP

readinessProbe:
httpGet:
port: http-dashboard
path: /health

initialDelaySeconds: 5
periodSeconds: 10

livenessProbe:
httpGet:
port: http-dashboard
path: /health

initialDelaySeconds: 15
periodSeconds: 20

service:
type: ClusterIP
selector:
dask.org/cluster-name: example
dask.org/component: scheduler

ports:
- name: tcp-comm
protocol: TCP
port: 8786
targetPort: "tcp-comm"

- name: http-dashboard
protocol: TCP

(continues on next page)

3.4. Autoscalers 39

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

port: 8787
targetPort: "http-dashboard"

Note that the spec.worker.spec section of the new cluster spec matches the spec of the old pod spec. But as you
can see there is a lot more configuration available in this example including first-class control over the scheduler pod
and service.

One powerful difference of using our own custom resources is that everything about our cluster is contained in
the DaskCluster spec and all of the cluster lifecycle logic is handled by our custom controller in Kubernetes.
This means we can equally create our cluster with Python or via the kubectl CLI. You don’t even need to have

dask-kubernetes installed to manage your clusters if you have other Kubernetes tooling that you would like to inte-
grate with natively.

from dask_kubernetes.operator import KubeCluster

cluster = KubeCluster(custom_cluster_spec="cluster-spec.yml")

Is the same as:

$ kubectl apply -f cluster-spec.yml

You can still connect to the cluster created via kubectl back in Python by name and have all of the convenience of
using a cluster manager object.

from dask.distributed import Client
from dask_kubernetes.operator import KubeCluster

cluster = KubeCluster.from_name("example")
cluster.scale(5)
client = Client(cluster)

Middle ground

There is also a middle ground for users who would prefer to stay in Python and have much of the spec generated for
them, but still want to be able to make complex customisations.

When creating a new KubeCluster with keyword arguments those arguments are passed to a call to
dask_kubernetes.operator.make_cluster_spec which is similar to dask_kubernetes.make_pod_spec
that you may have used in the past. This function generates a dictionary representation of your DaskCluster spec

which you can modify and pass to KubeCluster yourself.

from dask_kubernetes.operator import KubeCluster, make_cluster_spec

cluster = KubeCluster(name="foo", n_workers= 2, env={"FOO": "bar"})

is equivalent to

spec = make_cluster_spec(name="foo", n_workers= 2, env={"FOO": "bar"})
cluster = KubeCluster(custom_cluster_spec=spec)

This is useful if you want the convenience of keyword arguments for common options but still have the ability to
make advanced tweaks like setting nodeSelector options on the worker pods.

40 Chapter 3. What resources does the operator manage?

Dask Kubernetes Documentation, Release 2024.5.0

from dask_kubernetes.operator import KubeCluster, make_cluster_spec

spec = make_cluster_spec(name="selector-example", n_workers=2)
spec["spec"]["worker"]["spec"]["nodeSelector"] = {"disktype": "ssd"}

cluster = KubeCluster(custom_cluster_spec=spec)

This can also enable you to migrate smoothly over from the existing tooling if you are using make_pod_spec as the
classic pod spec is a subset of the new cluster spec.

from dask_kubernetes.operator import KubeCluster, make_cluster_spec
from dask_kubernetes.classic import make_pod_spec

generate your existing classic pod spec
pod_spec = make_pod_spec(**your_custom_options)
pod_spec[...] = ... # Your existing tweaks to the pod spec

generate a new cluster spec and merge in the existing pod spec
cluster_spec = make_cluster_spec(name="merge-example")
cluster_spec["spec"]["worker"]["spec"] = pod_spec["spec"]

cluster = KubeCluster(custom_cluster_spec=cluster_spec)

Troubleshooting

Moving from the classic implementation to the new operator based implementation will require some effort on your
part. Sorry about that.

Hopefully this guide has given you enough information that you are motivated and able to make the change. However
if you get stuck or you would like input from a Dask maintainer please don’t hesitate to reach out to us via the Dask
Forum.

3.4.7 Testing

Running the test suite for dask-kubernetes doesn’t require an existing Kubernetes cluster but does require Docker,
kubectl and helm.

Start by installing dask-kubernetes in editable mode - this will ensure that pytest can import dask-kubernetes:

$ pip install -e .

You will also need to install the test dependencies:

$ pip install -r requirements-test.txt

Tests are run using pytest:

$ pytest
==␣
→˓test session starts ==
platform darwin -- Python 3.8.8, pytest-6.2.2, py-1.10.0, pluggy-0.13.1 --
cachedir: .pytest_cache

(continues on next page)

3.4. Autoscalers 41

https://dask.discourse.group/
https://dask.discourse.group/
https://docs.docker.com/get-docker/
https://kubernetes.io/docs/tasks/tools/#kubectl
https://helm.sh/docs/intro/install/
https://docs.pytest.org/en/stable/

Dask Kubernetes Documentation, Release 2024.5.0

(continued from previous page)

rootdir: /Users/jtomlinson/Projects/dask/dask-kubernetes, configfile: setup.cfg
plugins: anyio-2.2.0, asyncio-0.14.0, kind-21.1.3
collected 64 items

...
================= 56 passed,
→˓ 1 skipped, 6 xfailed, 1 xpassed, 53 warnings in 404.19s (0:06:44) ==================

Note: Running pytest compiles the Custom Resource Definitions from source using k8s-crd-resolver, tests
against them and then uninstalls them. You may have to install them again manually.

Kind

To test dask-kubernetes against a real Kubernetes cluster we use the pytest-kind plugin.

Kind stands for Kubernetes in Docker and will create a full Kubernetes cluster within a single Docker container on
your system. Kubernetes will then make use of the lower level containerd runtime to start additional containers, so
your Kubernetes pods will not appear in your docker ps output.

By default we set the --keep-cluster flag in setup.cfg which means the Kubernetes container will persist
between pytest runs to avoid creation/teardown time. Therefore you may want to manually remove the container
when you are done working on dask-kubernetes:

$ docker stop pytest-kind-control-plane
$ docker rm pytest-kind-control-plane

When you run the tests for the first time a config file will be created called .pytest-kind/pytest-kind/
kubeconfig which is used for authenticating with the Kubernetes cluster running in the container. If you wish
to inspect the cluster yourself for debugging purposes you can set the environment variable KUBECONFIG to point to

that file, then use kubectl or helm as normal:

$ export KUBECONFIG=.pytest-kind/pytest-kind/kubeconfig
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
pytest-kind-control-plane Ready control-plane,master 10m v1.20.2
$ helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

Docker image

Within the test suite there is a fixture which creates a Docker image called dask-kubernetes:dev from this Dock-
erfile. This image will be imported into the kind cluster and then be used in all Dask clusters created. This is the
official Dask Docker image but with the very latest trunks of dask and distrubuted installed. It is recommended

that you also have the latest development install of those projects in your local development environment too.

This image may go stale over time so you might want to periodically delete it to ensure it gets recreated with the
latest code changes:

$ docker rmi dask-kubernetes:dev

42 Chapter 3. What resources does the operator manage?

https://github.com/dask/dask-kubernetes/blob/7c845e9679b614b7b554f10127876d5eb7cb318b/dask_kubernetes/conftest.py#L77
https://pypi.org/project/pytest-kind/
https://kind.sigs.k8s.io/
https://containerd.io/
https://github.com/dask/dask-kubernetes/blob/main/ci/Dockerfile
https://github.com/dask/dask-kubernetes/blob/main/ci/Dockerfile

Dask Kubernetes Documentation, Release 2024.5.0

Linting and formatting

To accept Pull Requests to dask-kubernetes we require that they pass black formatting and flake8 linting.

To save developer time we support using pre-commit which runs black and flake8 every time you attempt to locally
commit code:

$ pip install pre-commit
$ pre-commit install

Testing Operator Controller PRs

Sometimes you may want to try out a PR of changes made to the operator controller before it has been merged.

To do this you’ll need to build a custom Docker image and push it to a registry that your k8s cluster can pull from.

The custom image needs to take the latest stable release of the controller and install the development branch into it.
You can do this directly from GitHub repos with pip or you can copy your local files in and install that.

FROM ghcr.io/dask/dask-kubernetes-operator:<latest stable release>

RUN pip install git+https://github.com/dask/dask-kubernetes.git@refs/pull/<PR>/head

$ docker build -t <image>:<tag> .
$ docker push -t <image>:<tag> .

Then you can use helm to install the controller with your custom image.

$ helm install --repo https://helm.dask.org \
--create-namespace \
-n dask-operator \
--generate-name \
dask-kubernetes-operator \
--set image.name=<image> \
--set image.tag=<tag>

3.4.8 Releasing

Releases are published automatically when a tag is pushed to GitHub.

Set next version number
export RELEASE=x.x.x

Create tags
git commit --allow-empty -m "Release $RELEASE"
git tag -a $RELEASE -m "Version $RELEASE"

Push
git push upstream --tags

3.4. Autoscalers 43

https://pre-commit.com/

Dask Kubernetes Documentation, Release 2024.5.0

3.4.9 History

This repository was originally inspired by a Dask+Kubernetes solution within the Jade (Jupyter and Dask Envi-
ronemt) project out of the UK Met office Informatics Lab. This Dask + Kubernetes solution was primarily developed
by Jacob Tomlinson of the Informatics Lab and Matt Pryor of the STFC and funded by NERC.

It was then adapted by Yuvi Panda at the UC Berkeley Institute for Data Science (BIDS) and DSEP programs while
using it with JupyterHub on the Pangeo project. It was then brought under the Dask github organization where it
lives today.

This repository was originally named daskernetes to avoid conflict with an older, Google Cloud Platform specific
solution named dask-kubernetes. Eventually this package superceded that one and took on the name dask-kubernetes.

44 Chapter 3. What resources does the operator manage?

https://github.com/met-office-lab/jade-dask/blob/master/kubernetes/adaptive.py
http://www.informaticslab.co.uk/projects/jade.html
http://www.informaticslab.co.uk/projects/jade.html
https://www.metoffice.gov.uk/
http://www.informaticslab.co.uk/
https://github.com/jacobtomlinson
https://github.com/mkjpryor-stfc
http://www.stfc.ac.uk/
http://www.nerc.ac.uk/
http://words.yuvi.in/
https://bids.berkeley.edu/
http://data.berkeley.edu/
https://jupyterhub.readthedocs.io/en/latest/
https://pangeo-data.github.io/

INDEX

A
adapt() (dask_kubernetes.operator.KubeCluster

method), 20
add_worker_group() (dask_kubernetes.operator.KubeCluster

method), 21

C
close() (dask_kubernetes.operator.KubeCluster

method), 21

D
delete_worker_group()

(dask_kubernetes.operator.KubeCluster
method), 21

F
from_name() (dask_kubernetes.operator.KubeCluster

class method), 22

G
get_logs() (dask_kubernetes.operator.KubeCluster

method), 22

K
KubeCluster (class in dask_kubernetes.operator), 18

M
make_cluster_spec() (in module

dask_kubernetes.operator), 23
make_worker_spec() (in module

dask_kubernetes.operator), 23

S
scale() (dask_kubernetes.operator.KubeCluster

method), 22

45

	Quickstart
	What is the operator?
	What resources does the operator manage?
	Worker Groups
	Clusters
	Jobs
	Autoscalers
	Installing
	Python package
	Pip
	Conda
	Install from Source

	Operator
	Quickstart
	Installing with Helm
	Single namespace
	Prometheus
	Chart Configuration Reference
	Dask-kubernetes-operator
	Configuration

	Installing with Manifests
	Kubeflow
	User permissions
	Dashboard access

	Supported Versions
	Python
	Kubernetes

	KubeCluster
	Cluster manager
	Additional worker groups
	Customising your cluster
	Private container registry

	Role-Based Access Control (RBAC)
	API

	Custom Resources
	DaskCluster
	DaskWorkerGroup
	DaskJob
	DaskAutoscaler
	Labels and Annotations
	Example

	Full Configuration Reference

	Extending (advanced)
	Controller Design Overview
	Writing your own handlers
	Installing your plugin

	Troubleshooting
	Why am I losing data during scale down?

	Migrating from classic
	Installing the operator
	Using the new KubeCluster
	Simplified Python API
	Advanced YAML API
	Middle ground

	Troubleshooting

	Testing
	Kind
	Docker image
	Linting and formatting
	Testing Operator Controller PRs

	Releasing
	History

	Index

